
LATEX3 News
Issue 10, November 2016

There has been something of a gap since the last
LATEX3 News, but this does not mean that work has
not been going on. The Team have been working on a
number of areas, many of which reflect wider take-up
of expl3. There have also been a number of significant
new developments in the LATEX3 “sphere” in the last
two years.

l3build: Testing LATEX packages

Testing has been an important part of the work of the
team since they assumed maintenance of LATEX over
twenty years ago. Various scripts have been used over
that time by the team for testing, but these have until
recently not been set up for wider use.

With the general availability of LuaTEX it is now
possible to be sure that every TEX user has a pow-
erful general scripting language available: Lua. The
team have used this to create a new general testing
system for TEX code, l3build. This is designed to be
used beyond the team, so is now available in TEX Live
and MiKTEX and is fully documented. Testing using
l3build makes use of a normalised version of the .log
file, so can test any aspect of TEX output (e.g., by us-
ing \showbox) or its algorithms (by displaying results
in the .log).

Part of the remit for creating l3build was to enable
the team to work truly cross-platform and to allow
testing using multiple TEX engines (earlier systems
were limited to a single engine, normally ε-TEX). The
new testing system means we are in a much stronger
position to support a variety of engines (see below). It
has also enabled us to give useful feedback on develop-
ment of the LuaTEX engine.

As well as the core capability in testing, l3build also
provides a “one stop” script for creating release bun-
dles. The script is sufficiently flexible that for many
common LATEX package structures, setting up for cre-
ating releases will require only a few lines of configura-
tion.

In addition to the documentation distributed with
l3build, the project website [1, publications in 2014]
contains some articles, videos and conference presen-
tations that explain how to use l3build to manage and
test any type of (LATEX) package.

Automating expl3 testing

As well as developing l3build for local use, the team
have also set up integration testing for expl3 using the
Travis-CI system. This means that every commit to the
LATEX3 code base now results in a full set of tests be-
ing run. This has allowed us to significantly reduce the
number of occasions where expl3 needs attention before
being released to CTAN.

Automated testing has also enabled us to check that
expl3 updates do not break a number of key third-party
packages which use the programming environment.

Refining expl3

Work continues to improve expl3 both in scope and ro-
bustness. Increased use of the programming environ-
ment means that code which has to-date been under-
explored is being used, and this sometimes requires
changes to the code.

The team have extended formal support in expl3 to
cover the engines pTEX and upTEX, principally used
by Japanese TEX users. This has been possible in part
due to the l3build system discussed above. Engine-
dependent variations between pdfTEX, X ETEX, LuaTEX
and (u)pTEX are now well-understood and documented.
As part of this process, the “low-level” part of expl3,
which saves all primitives, now covers essentially all
primitives found in all of these engines.

The code in expl3 is now entirely self-contained, load-
ing no other third-party packages, and can also be
loaded as a generic package with plain TEX, etc. These
changes make it much easier to diagnose problems and
make expl3 more useful. In particular it can be used as
a programming language for generic packages, that then
can run without modifications under different formats!

The team have made a range of small refinements
to both internals and expl3 interfaces. Internal self-
consistency has also been improved, for example re-
moving almost all use of nopar functions. Performance
enhancements to the l3keys part of expl3 are ongoing
and should result in significantly faster key setting. As
keyval methods are increasingly widely used in defining
behaviours, this will have an impact on compile times
for end users.

Replacing \lowercase and \uppercase

As discussed in the last LATEX3 News, the team have
for some time been keen to provide new interfaces

LATEX3 News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2016, all rights reserved.



which do not directly expose (or in some cases even
use) the TEX primitives \lowercase and \uppercase.
We have now created a series of different interfaces that
provide support for the different conceptual uses which
may flow from the primitives:

� For case changing text, \tl_upper_case:n, \tl_
lower_case:n, \tl_mixed_case:n and related
language-aware functions. These are Unicode-
capable and designed for working with text. They
also allow for accents, expansion of stored text and
leaving math mode unchanged. At present some of
the interface decisions are not finalised so they are
marked as experimental, but the team expect the
core concept to be stable.

� For case changing programming strings, \str_
upper_case:n, \str_lower_case:n and \str_

fold_case:n. Again these are Unicode-aware,
but in contrast to the functions for text are not
context-dependent. They are intended for caseless
comparisons, constructing command names on-the-
fly and so forth.

� For creating arbitrary character tokens, \char_
generate:nn. This is based on the \Ucharcat
primitive introduced by X ETEX, but with the ideas
extended to other engines. This function can be
used to create almost any reasonable token.

� For defining active characters, \char_set_active_
eq:NN and related functions. The concept here is
that active characters should be equivalent to some
named function, so one does not directly define the
active character.

Extending xparse

After discussions at TUG2015 and some experimen-
tation, the team have added a new argument type, e
(“embellishment”), to xparse. This allows arguments
similar to TEX primitive sub- and superscripts to be
accepted. Thus

\DeclareDocumentCommand\foo{e{^_}}

{\showtokens{"#1"}}

\foo^{Hello} world

will show

"{Hello}{-NoValue-}".

At present, this argument type is experimental: there
are a number of models which may make sense for this
interface.

A new \parshape model

As part of development of l3galley, Joseph Wright has
proposed a new model for splitting up the functions of
the \parshape primitive into three logical elements:

� Margins between the edges of the galley and the
paragraph (for example an indented block);

� Cut-out sections running over a fixed number of
lines, to support “in place” figures and so forth;

� Running or single-paragraph shape.

There are additional elements to consider here, for
example whether lines are the best way to model the
length of shaping, how to handle headings, cut-outs at
page breaks, etc.

Globally optimized pagination of documents

Throughout 2016 Frank Mittelbach has worked on
methods and algorithms for globally optimizing the
pagination of documents including those that contain
floats. Early research results have been presented at
BachoTEX 2016, TUG 2016 in Toronto and later in
the year at DocEng’16, the ACM Symposium on Docu-
ment Engineering in Vienna. A link to the ACM paper
(that allows a download free of charge) can be found on
the project website [1]. The site also holds the speaker
notes from Toronto and will host a link to a video of
the presentation once it becomes available.

The framework developed by Frank is based on the
extended functionality provided by LuaTEX, in particu-
lar its callback functions that allow interacting with the
typesetting process at various points. The algorithm
that determines the optimal pagination of a given doc-
ument is implemented in Lua and its results are then
used to direct the formatting done by the TEX engine.

At the current point in time this a working proto-
type but not yet anywhere near a production-ready
system. However, the work so far shows great poten-
tial and Frank is fairly confident that it will eventually
become a generally usable solution.

Looking forward

The LuaTEX engine has recently reached version 1.0.
This may presage a stable LuaTEX and is likely to re-
sult in wider use of this engine in production docu-
ments.If that happens we expect to implement some of
the more complex functionality (such as complex pagi-
nation requirements and models) only for LuaTEX.

References

[1] Links to various publications by members of the
LATEX Project Team.
https://www.latex-project.org/publications.

–2

https://www.latex-project.org/publications

	l3build: Testing LaTeX packages
	Automating expl3 testing
	Refining expl3
	Replacing lowercase and uppercase
	Extending xparse
	A new parshape model
	Globally optimized pagination of documents
	Looking forward

